If you don’t need the full power of the grammar of graphics to generate classical plots for the web altair_recipes is the the easy way. Check it out with pip install altair_recipes.


vega is a statistical graphics system for the web, meaning charts are displayed in a browser. As an added bonus, it supports interactions, again through web technologies: select data point, reveal information on hover etc. Interactive graphics for the web are the future of statistical graphics. Even the successor to the famous ggplot for R, ggvis, is based on vega (I am glossing over the distinction between vega and vega-lite here for brevity).

altair is a python package that produces vega graphics. Like vega, it adopts an approach to describing statistical graphics known as grammar of graphics which underlies other well known packages such as ggplot for R. It represents an extremely useful compromise of power and flexibility. Its elements are data, marks (points, lines), encodings (relations between data and marks), scales etc.

Why altair_recipes?

Sometimes we want to skip all of that and just produce a boxplot (or heatmap or histogram) in the simplest possible way:

from  altair_recipes import boxplot
from altair_recipes.display_altair import show, Output
from vega_datasets import data
    boxplot(data.iris(), columns="petalLength", group_by="species", width=width),

(The show call is only for compatibility with my publishing pipeline — skip if you are developing in a notebook or any IPython-kernel-based environment such as the atom extension Hydrogen).

There are many reasons why we may want to do so:

  • It’s a well known type of statistical graphics that everyone can recognize and understand on the fly.
  • Creativity is nice, in statistical graphics as in many other endeavors, but dangerous: there are plenty of bad charts out there. The grammar of graphics is no insurance.
  • While it’s simple to put together a boxplot in altair, it isn’t trivial: there are rectangles, vertical lines, horizontal lines (whiskers), points (outliers). Each element is related to a different statistics of the data. It’s about 30 lines of code and, unless you run them, it’s hard to tell what you are looking at.
  • One doesn’t always need the control that the grammar of graphics affords. There are times when I need to see a plot as quickly as possible. Others, for instance preparing a publication, when I need to control every detail.

The boxplot is not the only example. The scatterplot, the quantile-quantile plot, the heatmap are important idioms that are battle tested in data analysis practice. They deserve their own abstraction. Other packages offering an abstraction above the grammar level are:

  • seaborn and the graphical subset of pandas, for example, both provide high level statistical graphics primitives (higher than the grammar of graphics) and they are quite successful (but not web-based or interactive).
  • ggplot, even if named after the Grammar of Graphics, slipped in some more complex charts, pretending they are elements of the grammar, such as geom_boxplot, because sometimes even R developers are lazy. But a boxplot is not a geom or mark. It’s a combination of several ones, certain statistics and so on. I suspect the authors of altair know better than mixing the two levels (but vega has not avoided this trap, unfortunately).

altair_recipes aims to fill this space above altair while making full use of its features. It provides a growing list of “classic” statistical graphics without going down to the grammar level. At the same time it is hoped that, over time, it can become a repository of examples and model best practices for altair, a computable form of its gallery. In no way it is a replacement for altair: it trades power for convenience and tries to place itself at the highest possible level of abstraction. This is a list of chart types currently available:

  • autocorrelation
  • barchart
  • boxplot
  • heatmap
  • histogram, in a simple and multi-variable version
  • qqplot
  • scatterplot in the simple and all-vs-all versions
  • smoother, smoothing line with IRQ range shading
  • stripplot

You can see all of them in action in the Examples section of the documentation. The plan is to carefully expand this list over time with widely used chart types that fulfill a need, as opposed to aiming for an unattainable goal of completeness or indulging in originality for its own sake. Feedback and contributions are welcome.

Other features that promote ease of use are:

  • a highly consistent API enforced with autosig;
  • support for both wide and long format;
  • data can be provided as a dataframe or as a URL pointing to a csv or json file, just as in altair;
  • all charts produced are valid altair charts, can be modified, combined, saved, served, embedded exactly as one;
  • free software under BSD license.

Choosing a chart type.

It’s nice to have all these famous chart types available as one-liners, but we still have to decide which type of graphics to use and, in certain cases, the association between variables in the data and channels in the graphics (what becomes coordinate, what becomes color etc.). It still is work and things can still go wrong, sometimes in subtle ways. Enter autoplot. autoplot inspects the data, selects a suitable graphics and generates it. While no claim is made that the result is optimal, it will make reasonable choices and avoid common pitfalls, like overlapping points in scatterplots. While there are interesting research efforts aimed at characterizing the optimal graphics for a given data set, their goal is more ambitious than just selecting from a repertoire of pre-defined chart types and they are fairly complex. Therefore, at this time autoplot is based on a set of reasonable heuristics derived from decades of experience such as:

  • use stripplot and scatterplot to display continuous data, barcharts for discrete data
  • use opacity to counter mark overlap, but not with discrete color maps
  • switch to summaries (count and averages) when the amount of overlap is too high
  • use facets for discrete data.

In the following examples, we just have to provide autoplot with a dataset and a list of columns to plot. The result is a scatterplot faceted w.r.t. the only discrete column.

from altair_recipes import autoplot

    autoplot(data.iris(), columns=["petalLength", "sepalLength", "species"], width=width),

Opacity is used to prevent some points from completely hiding others. Opacity and discrete color scales don’t mix well, hence the use of faceting. In fact, just by displaying a subset of points, we can see the plot type adapt with no other change in the autoplot call.

        data.iris().sample(30, random_state=1),
        columns=["petalLength", "sepalLength", "species"],

With minimal overlap between points, there is no need to use opacity, which allows to represent the species with color as opposed to faceting. This also allows to keep the chart bigger (but size can also be specified by the user).

autoplot is work in progress and perhaps will always be and feedback is most welcome. A large number of charts generated with it is available at the end of the Examples page and should give a good idea of what it does. In particular, in this first iteration, we do not make any attempt to detect if a dataset represents a function or a relation, hence scatterplots are preferred over line plots. Moreover there is no support for:

  • evenly spaced data, such as a time series;
  • more than 3 variables being plotted at the same time;
  • additional channels such as size, shape and text.

There is no fundamental reason why these features are not included. Suggestions and contributions are welcome.


Quality in software is often a matter of opinion, but that’s no reason to skip the few measurable activities that improve code quality:

  • Fully documented.
  • Continuos integration
  • Near 100% regression test coverage.
  • B maintainability score according to Codeclimate. We miss the top mark because the API is “flat”, which brings about some function argument inflation. Most have defaults, though.
  • Dependencies checked with pyup.


If you are interested in interactive statistical graphics for the web in python and in particular if you are already using altair, altair_recipes is the path of least resistance to producing the most common plot types. Check it out and feel free to create an issue reporting problems or suggesting features. Or, better yet, come help with development!